Research on an Improper Fractional Integral

Chii-Huei Yu
School of Mathematics and Statistics, Zhaoqing University, Guangdong, China
DOI: https://doi.org/10.5281/zenodo. 8240834
Published Date: 12-August-2023

Abstract

In this paper, based on Jumarie type of Riemann-Liouville (R-L) fractional calculus and a new multiplication of fractional analytic functions, we study an improper fractional integral. Moreover, our result is a generalization of traditional calculus result.

Keywords: Jumarie type of R-L fractional calculus, new multiplication, fractional analytic functions, improper fractional integral.

I. INTRODUCTION

In recent decades, the applications of fractional calculus in various fields of science is growing rapidly, such as physics, biology, mechanics, electrical engineering, viscoelasticity, control theory, modelling, economics, etc [1-15]. However, the rule of fractional derivative is not unique, many scholars have given the definitions of fractional derivatives. The common definition is Riemann-Liouville (R-L) fractional derivative. Other useful definitions include Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, and Jumarie type of R-L fractional derivative to avoid non-zero fractional derivative of constant function [16-20].

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions, we study the following improper fractional integral:

$$
\left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\left(\sin _{\alpha}\left(x^{\alpha}\right)\right)^{\otimes_{\alpha} 2} \otimes_{\alpha}\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-2)}\right]
$$

where $0<\alpha \leq 1$. In fact, our result is a generalization of traditional calculus result.

II. PRELIMINARIES

Firstly, we introduce the fractional calculus used in this paper.
Definition 2.1 ([21]): Let $0<\alpha \leq 1$, and x_{0} be a real number. The Jumarie's modified Riemann-Liouville (R-L) α fractional derivative is defined by

$$
\begin{equation*}
\left(x_{0} D_{x}^{\alpha}\right)[f(x)]=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d x} \int_{x_{0}}^{x} \frac{f(t)-f\left(x_{0}\right)}{(x-t)^{\alpha}} d t \tag{1}
\end{equation*}
$$

And the Jumarie type of Riemann-Liouville α-fractional integral is defined by

$$
\begin{equation*}
\left(x_{0} I_{x}^{\alpha}\right)[f(x)]=\frac{1}{\Gamma(\alpha)} \int_{x_{0}}^{x} \frac{f(t)}{(x-t)^{1-\alpha}} d t, \tag{2}
\end{equation*}
$$

where $\Gamma()$ is the gamma function.
Proposition 2.2 ([22]): If α, β, x_{0}, C are real numbers and $\beta \geq \alpha>0$, then

$$
\begin{equation*}
\left({ }_{x_{0}} D_{x}^{\alpha}\right)\left[\left(x-x_{0}\right)^{\beta}\right]=\frac{\Gamma(\beta+1)}{\Gamma(\beta-\alpha+1)}\left(x-x_{0}\right)^{\beta-\alpha}, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left({ }_{x_{0}} D_{x}^{\alpha}\right)[C]=0 \tag{4}
\end{equation*}
$$

Definition 2.3 ([23]): If x, x_{0}, and a_{n} are real numbers for all $n, x_{0} \in(a, b)$, and $0<\alpha \leq 1$. If the function f_{α} : $[a, b] \rightarrow R$ can be expressed as an α-fractional power series, that is, $f_{\alpha}\left(x^{\alpha}\right)=\sum_{n=0}^{\infty} \frac{a_{n}}{\Gamma(n \alpha+1)}\left(x-x_{0}\right)^{n \alpha}$ on some open interval containing x_{0}, then we say that $f_{\alpha}\left(x^{\alpha}\right)$ is α-fractional analytic at x_{0}. Furthermore, if $f_{\alpha}:[a, b] \rightarrow R$ is continuous on closed interval $[a, b]$ and it is α-fractional analytic at every point in open interval (a, b), then f_{α} is called an α-fractional analytic function on $[a, b]$.

In the following, we introduce a new multiplication of fractional analytic functions.
Definition 2.4 ([24]): If $0<\alpha \leq 1$. Assume that $f_{\alpha}\left(x^{\alpha}\right)$ and $g_{\alpha}\left(x^{\alpha}\right)$ are two α-fractional power series at $x=x_{0}$,

$$
\begin{align*}
& f_{\alpha}\left(x^{\alpha}\right)=\sum_{n=0}^{\infty} \frac{a_{n}}{\Gamma(n \alpha+1)}\left(x-x_{0}\right)^{n \alpha}, \tag{5}\\
& g_{\alpha}\left(x^{\alpha}\right)=\sum_{n=0}^{\infty} \frac{b_{n}}{\Gamma(n \alpha+1)}\left(x-x_{0}\right)^{n \alpha} . \tag{6}
\end{align*}
$$

Then

$$
\begin{align*}
& f_{\alpha}\left(x^{\alpha}\right) \otimes_{\alpha} g_{\alpha}\left(x^{\alpha}\right) \\
= & \sum_{n=0}^{\infty} \frac{a_{n}}{\Gamma(n \alpha+1)}\left(x-x_{0}\right)^{n \alpha} \otimes_{\alpha} \sum_{n=0}^{\infty} \frac{b_{n}}{\Gamma(n \alpha+1)}\left(x-x_{0}\right)^{n \alpha} \\
= & \sum_{n=0}^{\infty} \frac{1}{\Gamma(n \alpha+1)}\left(\sum_{m=0}^{n}\binom{n}{m} a_{n-m} b_{m}\right)\left(x-x_{0}\right)^{n \alpha} . \tag{7}
\end{align*}
$$

Equivalently,

$$
\begin{align*}
& f_{\alpha}\left(x^{\alpha}\right) \otimes_{\alpha} g_{\alpha}\left(x^{\alpha}\right) \\
= & \sum_{n=0}^{\infty} \frac{a_{n}}{n!}\left(\frac{1}{\Gamma(\alpha+1)}\left(x-x_{0}\right)^{\alpha}\right)^{\otimes_{\alpha} n} \otimes_{\alpha} \sum_{n=0}^{\infty} \frac{b_{n}}{n!}\left(\frac{1}{\Gamma(\alpha+1)}\left(x-x_{0}\right)^{\alpha}\right)^{\otimes_{\alpha} n} \\
= & \sum_{n=0}^{\infty} \frac{1}{n!}\left(\sum_{m=0}^{n}\binom{n}{m} a_{n-m} b_{m}\right)\left(\frac{1}{\Gamma(\alpha+1)}\left(x-x_{0}\right)^{\alpha}\right)^{\otimes_{\alpha} n} . \tag{8}
\end{align*}
$$

Definition 2.5 ([25]): If $0<\alpha \leq 1$, and x is a real number. The α-fractional exponential function is defined by

$$
\begin{equation*}
E_{\alpha}\left(x^{\alpha}\right)=\sum_{n=0}^{\infty} \frac{x^{n \alpha}}{\Gamma(n \alpha+1)}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha} n} \tag{9}
\end{equation*}
$$

On the other hand, the α-fractional cosine and sine function are defined as follows:

$$
\begin{equation*}
\cos _{\alpha}\left(x^{\alpha}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n \alpha}}{\Gamma(2 n \alpha+1)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha} 2 n}, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin _{\alpha}\left(x^{\alpha}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{(2 n+1) \alpha}}{\Gamma((2 n+1) \alpha+1)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(2 n+1)} . \tag{11}
\end{equation*}
$$

Theorem 2.6 (integration by parts for fractional calculus) ([26]): Assume that $0<\alpha \leq 1, a, b$ are real numbers, and $f_{\alpha}\left(x^{\alpha}\right), g_{\alpha}\left(x^{\alpha}\right)$ are α-fractional analytic functions, then

$$
\begin{equation*}
\left({ }_{a} I_{b}^{\alpha}\right)\left[f_{\alpha}\left(x^{\alpha}\right) \otimes_{\alpha}\left({ }_{a} D_{x}^{\alpha}\right)\left[g_{\alpha}\left(x^{\alpha}\right)\right]\right]=\left[f_{\alpha}\left(x^{\alpha}\right) \otimes_{\alpha} g_{\alpha}\left(x^{\alpha}\right)\right]_{x=a}^{x=b}-\left({ }_{a} I_{b}^{\alpha}\right)\left[g_{\alpha}\left(x^{\alpha}\right) \otimes_{\alpha}\left({ }_{a} D_{x}^{\alpha}\right)\left[f_{\alpha}\left(x^{\alpha}\right)\right]\right] \tag{12}
\end{equation*}
$$

Theorem 2.7 ([27]): If $0<\alpha \leq 1$, then the improper α-fractional integral

$$
\begin{equation*}
\left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\sin _{\alpha}\left(x^{\alpha}\right) \otimes_{\alpha}\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-1)}\right]=\frac{\pi}{2} \tag{13}
\end{equation*}
$$

III. MAIN RESULT

In this section, we solve a fractional integral involving fractional trigonometric function.
Theorem 3.1: Let $0<\alpha \leq 1$, then the improper α-fractional integral

$$
\begin{equation*}
\left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\left(\sin _{\alpha}\left(x^{\alpha}\right)\right)^{\otimes_{\alpha} 2} \otimes_{\alpha}\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-2)}\right]=\frac{\pi}{2} \tag{14}
\end{equation*}
$$

$$
\text { Proof } \begin{aligned}
& \left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\left(\sin _{\alpha}\left(x^{\alpha}\right)\right)^{\otimes_{\alpha} 2} \otimes_{\alpha}\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-2)}\right] \\
= & \left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\left(\sin _{\alpha}\left(x^{\alpha}\right)\right)^{\otimes_{\alpha} 2} \otimes_{\alpha}\left({ }_{0} D_{x}^{\alpha}\right)\left(-\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-1)}\right)\right] \\
= & {\left[\left(\sin _{\alpha}\left(x^{\alpha}\right)\right)^{\otimes_{\alpha} 2} \otimes_{\alpha}\left(-\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-1)}\right)\right]_{x=0}^{x=+\infty} } \\
& -\left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\left(-\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-1)}\right) \otimes_{\alpha}\left({ }_{0} D_{x}^{\alpha}\right)\left[\left(\sin _{\alpha}\left(x^{\alpha}\right)\right)^{\otimes_{\alpha} 2}\right]\right]
\end{aligned}
$$

(by integration by parts for fractional calculus)

$$
\begin{align*}
& =0-0+\left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-1)} \otimes_{\alpha} 2 \cdot \sin _{\alpha}\left(x^{\alpha}\right) \otimes_{\alpha} \cos _{\alpha}\left(x^{\alpha}\right)\right] \\
& =\left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-1)} \otimes_{\alpha} \sin _{\alpha}\left(2 x^{\alpha}\right)\right] \\
& =\left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\left(2 \cdot \frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)^{\otimes_{\alpha}(-1)} \otimes_{\alpha} \sin _{\alpha}\left(2 x^{\alpha}\right) \otimes_{\alpha}\left({ }_{0} D_{x}^{\alpha}\right)\left[2\left(\frac{1}{\Gamma(\alpha+1)} x^{\alpha}\right)\right]\right] \\
& =\left({ }_{0} I_{+\infty}^{\alpha}\right)\left[\sin _{\alpha}\left(t^{\alpha}\right) \otimes_{\alpha}\left(\frac{1}{\Gamma(\alpha+1)} t^{\alpha}\right)^{\otimes_{\alpha}(-1)}\right] \\
& =\frac{\pi}{2} .
\end{align*}
$$

IV. CONCLUSION

In this paper, based on Jumarie's modified R-L fractional calculus and a new multiplication of fractional analytic functions, we solve an improper fractional integral. In addition, our result is a generalization of ordinary calculus result. In the future, we will continue to use Jumarie type of R-L fractional calculus and the new multiplication of fractional analytic functions to solve problems in engineering mathematics and fractional differential equations.

REFERENCES

[1] Mohd. Farman Ali, Manoj Sharma, Renu Jain, An application of fractional calculus in electrical engineering, Advanced Engineering Technology and Application, vol. 5, no. 2, pp, 41-45, 2016.
[2] R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Computers \& Mathematics with Applications, vol. 59, no. 5, pp. 1586-1593, 2010.
[3] J. T. Machado, Fractional Calculus: Application in Modeling and Control, Springer New York, 2013.
[4] F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 4, pp. 939-945, 2010.
[5] R. Hilfer (ed.), Applications of Fractional Calculus in Physics, WSPC, Singapore, 2000.

International Journal of Recent Research in Physics and Chemical Sciences (IJRRPCS)

Vol. 10, Issue 1, pp: (37-40), Month: April 2023 - September 2023, Available at: www.paperpublications.org
[6] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. 1, Background and Theory, Vol. 2, Application. Springer, 2013.
[7] V. E. Tarasov, Mathematical economics: application of fractional calculus, Mathematics, Vol. 8, No. 5, 660, 2020.
[8] M. F. Silva, J. A. T. Machado, A. M. Lopes, Fractional order control of a hexapod robot, Nonlinear Dynamics, vol. 38, pp. 417-433, 2004.
[9] A. Carpinteri, F. Mainardi, (Eds.), Fractals and fractional calculus in continuum mechanics, Springer, Wien, 1997.
[10] N. Heymans, Dynamic measurements in long-memory materials: fractional calculus evaluation of approach to steady state, Journal of Vibration and Control, vol. 14, no. 9, pp. 1587-1596, 2008.
[11] R. C. Koeller, Applications of fractional calculus to the theory of viscoelasticity, Journal of Applied Mechanics, vol. 51, no. 2, 299, 1984.
[12] T. Sandev, R. Metzler, \& Ž. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 25, 255203, 2011.
[13] J. P. Yan, C. P. Li, On chaos synchronization of fractional differential equations, Chaos, Solitons \& Fractals, vol. 32, pp. 725-735, 2007.
[14] C. -H. Yu, A study on fractional RLC circuit, International Research Journal of Engineering and Technology, vol. 7, no. 8, pp. 3422-3425, 2020.
[15] C. -H. Yu, A new insight into fractional logistic equation, International Journal of Engineering Research and Reviews, vol. 9, no. 2, pp.13-17, 2021.
[16] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations; John Willy and Sons, Inc.: New York, NY, USA, 1993.
[17] K. B. Oldham, J. Spanier, The Fractional Calculus; Academic Press: New York, NY, USA, 1974.
[18] I. Podlubny, Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.
[19] S. Das, Functional Fractional Calculus, 2nd Edition, Springer-Verlag, 2011.
[20] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, 2010.
[21] C. -H. Yu, Using trigonometric substitution method to solve some fractional integral problems, International Journal of Recent Research in Mathematics Computer Science and Information Technology, vol. 9, no. 1, pp. 10-15, 2022.
[22] U. Ghosh, S. Sengupta, S. Sarkar and S. Das, Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function, American Journal of Mathematical Analysis, vol. 3, no. 2, pp. 32-38, 2015.
[23] C. -H. Yu, Study of fractional analytic functions and local fractional calculus, International Journal of Scientific Research in Science, Engineering and Technology, vol. 8, no. 5, pp. 39-46, 2021.
[24] C. -H. Yu, Exact solutions of some fractional power series, International Journal of Engineering Research and Reviews, vol. 11, no. 1, pp. 36-40, 2023.
[25] C. -H. Yu, Research on two types of fractional integrals, International Journal of Electrical and Electronics Research, vol. 10, no. 4, pp. 33-37, 2022.
[26] C. -H. Yu, Differential properties of fractional functions, International Journal of Novel Research in Interdisciplinary Studies, vol. 7, no. 5, pp. 1-14, 2020.
[27] C. -H. Yu, Application of differentiation under fractional integral sign, International Journal of Mathematics and Physical Sciences Research, vol. 10, no. 2, pp. 40-46, 2022.

