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I.   INTRODUCTION 

In recent decades, the applications of fractional calculus in various fields of science is growing rapidly, such as physics, 

biology, mechanics, electrical engineering, viscoelasticity, control theory, modelling, economics, etc [1-15]. However, the 

rule of fractional derivative is not unique, many scholars have given the definitions of fractional derivatives. The common 

definition is Riemann-Liouville (R-L) fractional derivative. Other useful definitions include Caputo fractional derivative, 

Grunwald-Letnikov (G-L) fractional derivative, and Jumarie type of R-L fractional derivative to avoid non-zero fractional 

derivative of constant function [16-20]. 

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication of fractional analytic functions, we 

study the following improper fractional integral: 

                                                                          ( 𝐼0 +∞
𝛼 ) [(𝑠𝑖𝑛𝛼(𝑥𝛼))

⨂𝛼 2
⨂𝛼 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

] , 

where 0 < 𝛼 ≤ 1. In fact, our result is a generalization of traditional calculus result. 
 

II.   PRELIMINARIES 

Firstly, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([21]): Let 0 < 𝛼 ≤ 1, and 𝑥0  be a real number. The Jumarie’s modified Riemann-Liouville (R-L) 𝛼-

fractional derivative is defined by 

                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                        (1) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 

                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                                   (2) 

where Γ( ) is the gamma function. 

Proposition 2.2 ([22]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                                   (3) 
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and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                                  (4) 

Definition 2.3 ([23]): If 𝑥, 𝑥0, and 𝑎𝑛 are real numbers for all 𝑛, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼 -fractional power series, that is, 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  on some open interval 

containing 𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed 

interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic 

function on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([24]): If 0 < 𝛼 ≤ 1. Assume that 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional power series at 𝑥 = 𝑥0, 

                                                                                    𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ,                                                         (5) 

                                                                                   𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 .                                                         (6) 

Then  

                                                                    𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                               = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0   

                                                               = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)𝑛𝛼 .                                                  (7) 

Equivalently, 

                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                    = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0   

                                                    = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

 .                                                (8) 

Definition 2.5 ([25]): If 0 < α ≤ 1, and 𝑥 is a real number. The 𝛼-fractional exponential function is defined by 

                                                                    𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                             (9) 

On the other hand, the 𝛼-fractional cosine and sine function are defined as follows: 

                                                         𝑐𝑜𝑠𝛼(𝑥𝛼) = ∑
(−1)𝑛𝑥2𝑛𝛼

Γ(2𝑛𝛼+1)
= ∑

(−1)𝑛

(2𝑛)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2𝑛
∞
𝑛=0

∞
𝑛=0 ,                                        (10) 

and 

                                                   𝑠𝑖𝑛𝛼(𝑥𝛼) = ∑
(−1)𝑛𝑥(2𝑛+1)𝛼

Γ((2𝑛+1)𝛼+1)
= ∑

(−1)𝑛

(2𝑛+1)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (2𝑛+1)
∞
𝑛=0

∞
𝑛=0  .                              (11) 

Theorem 2.6 (integration by parts for fractional calculus) ([26]): Assume that 0 < 𝛼 ≤ 1, 𝑎, 𝑏 are real numbers, and 

𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic functions, then 

           ( 𝐼𝑎 𝑏
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 ( 𝐷𝑎 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]] = [𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)]
𝑥=𝑎

𝑥=𝑏
− ( 𝐼𝑎 𝑏

𝛼) [𝑔𝛼(𝑥𝛼)⨂𝛼 ( 𝐷𝑎 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]].        (12) 

Theorem 2.7 ([27]): If  0 < 𝛼 ≤ 1, then the improper α-fractional integral 

                                                                     ( 𝐼0 +∞
𝛼 ) [𝑠𝑖𝑛𝛼(𝑥𝛼)⨂𝛼 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

] =
𝜋

2
 .                                                (13) 
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III.   MAIN RESULT 

In this section, we solve a fractional integral involving fractional trigonometric function.  

Theorem 3.1:  Let 0 < 𝛼 ≤ 1, then the improper 𝛼-fractional integral 

                                                              ( 𝐼0 +∞
𝛼 ) [(𝑠𝑖𝑛𝛼(𝑥𝛼))

⨂𝛼 2
⨂𝛼 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

] =
𝜋

2
 .                                           (14) 

Proof               ( 𝐼0 +∞
𝛼 ) [(𝑠𝑖𝑛𝛼(𝑥𝛼))

⨂𝛼 2
⨂𝛼 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−2)

]  

                     = ( 𝐼0 +∞
𝛼 ) [(𝑠𝑖𝑛𝛼(𝑥𝛼))

⨂𝛼 2
⨂𝛼 ( 𝐷0 𝑥

𝛼) (− (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

)]  

                     = [(𝑠𝑖𝑛𝛼(𝑥𝛼))
⨂𝛼 2

⨂𝛼 (− (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

)]
𝑥=0

𝑥=+∞

    

                        −( 𝐼0 +∞
𝛼 ) [(− (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

) ⨂𝛼 ( 𝐷0 𝑥
𝛼) [(𝑠𝑖𝑛𝛼(𝑥𝛼))

⨂𝛼 2
]]  

(by integration by parts for fractional calculus) 

                     = 0 − 0 + ( 𝐼0 +∞
𝛼 ) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

⨂𝛼 2 ∙ 𝑠𝑖𝑛𝛼(𝑥𝛼)⨂𝛼 𝑐𝑜𝑠𝛼(𝑥𝛼)]  

                     = ( 𝐼0 +∞
𝛼 ) [(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

⨂𝛼 𝑠𝑖𝑛𝛼(2𝑥𝛼)]  

                     = ( 𝐼0 +∞
𝛼 ) [(2 ∙

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (−1)

⨂𝛼 𝑠𝑖𝑛𝛼(2𝑥𝛼)⨂𝛼 ( 𝐷0 𝑥
𝛼) [2 (

1

Γ(𝛼+1)
𝑥𝛼)]]       

                     = ( 𝐼0 +∞
𝛼 ) [𝑠𝑖𝑛𝛼(𝑡𝛼)⨂𝛼 (

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝛼 (−1)

]         

                     =
𝜋

2
  .                                                                                                                                                             Q.e.d. 

IV.   CONCLUSION 

In this paper, based on Jumarie’s modified R-L fractional calculus and a new multiplication of fractional analytic functions, 

we solve an improper fractional integral. In addition, our result is a generalization of ordinary calculus result. In the future, 

we will continue to use Jumarie type of R-L fractional calculus and the new multiplication of fractional analytic functions 

to solve problems in engineering mathematics and fractional differential equations. 
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